Explore projects
-
Want to learn how to use snakemake? Here are some example to demonstrate the main components and some advanced functionalities.
Updated -
Updated
-
R3 / school / julia / julia23-lecture-code
The UnlicenseUpdated -
In this repository I will try to test app reviews feature of Gitlab
Updated -
-
LCSB-BioCore / GigaScatter.jl
Apache License 2.0Updated -
LCSB-BioCore / CuFluxSampler.jl
Apache License 2.0Updated -
LCSB-BioCore / publications / Hemedan 2023-Boolean modelling of PD
Apache License 2.0Updated -
LCSB-BioCore / FBCModelTests.jl
Apache License 2.0Updated -
TNG / papers / PD GBM Publication
Apache License 2.0Updated -
nutriomix / microbiome
Apache License 2.0This repository contains the entire microbiome code based on COBREXA.jl
Updated -
-
Sascha Herzinger / ada-web
Creative Commons Attribution Non Commercial 3.0 UnportedWeb part of Ada Discovery Analytics backed by Play Framework.
Updated -
Miroslav Kratochvil / r3-pages
Creative Commons Zero v1.0 UniversalRepository for building the official website of the R3 lab.
Updated -
Updated
-
LCSB-BioCore / COBREXA.jl
Apache License 2.0Constraint-Based Reconstruction and EXascale Analysis
UpdatedUpdated -
Elisa Gomezdelope / ML_UPDRSIII_metab_transc
MIT LicenseThis repository contains the code for ML analyses performed in Chapter 5 of my PhD thesis "Interpretable machine learning on omics data for the study of UPDRS III prognosis". The project consists on predicting the Unified Parkinson’s Disease Rating Scale Part III (UPDRS III) motor scores (mild/severe when classification) from whole blood transcriptomics and blood plasma metabolomics using measurements from the baseline clinical visit, and temporal or dynamic features engineered from a short temporal series of 4 and 3 timepoints, respectively, from the PPMI cohort and the LuxPARK cohort, aiming at identifying molecular and higher-level functional fingerprints linked specifically to the motor symptoms in PD.
Updated -
-
Diana HENDRICKX / git.practice
Apache License 2.0Practice repository R3 git training. Slides: https://r3school.pages.uni.lu/git.slides
Updated